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We consider electron waveguides �quantum wires� in graphene created by suitable inhomogeneous magnetic
fields. The properties of unidirectional snake states are discussed. For a certain magnetic field profile, two
spatially separated counterpropagating snake states are formed, leading to conductance quantization insensitive
to backscattering by impurities or irregularities of the magnetic field.
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The physics of monolayer graphene devices has recently
attracted a great deal of attention.1,2 From a fundamental
perspective, one can hope to relate experimental observa-
tions to the mathematical properties of two-dimensional
massless Dirac-Weyl quasiparticles. The pseudorelativistic
dispersion relation with Fermi velocity vF�106 m /s is inti-
mately connected to the sublattice structure: the basis of the
graphene honeycomb lattice contains two carbon atoms, giv-
ing rise to an isospin degree of freedom. Graphene has also
been suggested as a new material system for device
applications.2 In this paper, we pose �and affirmatively an-
swer� the question of whether quantum wires with quantized
conductance can be formed in graphene. Such electron
waveguides are indispensable parts of any conceivable all-
graphene device. In lithographically formed graphene “rib-
bons,” the electronic band structure is theoretically expected
to depend very sensitively on the width and on details of the
boundary.3 On top of that, disorder and structural inhomoge-
neity are substantial in real graphene.4 For narrow graphene
ribbons or electrostatically formed graphene wires,5 conven-
tional conductance quantization thus seems unlikely.6 This
expectation is in accordance with recent experiments.7

In contrast to such pessimism, we here demonstrate that,
by designing a suitable inhomogeneous magnetic field, a
magnetic waveguide can be built that indeed allows for the
perfectly quantized two-terminal conductance 4e2 /h �includ-
ing spin and valley degeneracy� even when disorder is
present. The disorder insensitivity is based on a spatial sepa-
ration of the left- and right-moving “snake” states found un-
der the model geometry shown in Fig. 1�a�. This is reminis-
cent of the edge states encountered in the integer quantum
Hall regime,8 but here refers to a completely different micro-
scopic picture. Such double-snake states develop in the re-
gime B�0 but B��0, while an individual snake state is
unidirectional and already found in the setup of Fig. 1�b�.
Magnetic barrier technology is well developed9–11 and its
application to graphene samples appears to pose no funda-
mental problems.12 In fact, snake states were experimentally
studied in other materials,9,13 mainly motivated by the quest
for electrical rectification. On the theory side, for
Schrödinger fermions, the magnetic field profile in Fig. 1�a�
�but only for B�=0� was discussed in Ref. 14, and asymmet-
ric cases as in Fig. 1�b� have been studied by a number of
authors.15 For the Dirac-Weyl quasiparticles encountered in
graphene, however, such calculations have not been reported.
Inhomogeneous magnetic fields in graphene were discussed
by several of us,16 and we employ that framework in our

proposal of magnetic waveguides in graphene.
For a static orbital magnetic field with perpendicular com-

ponent B�x ,y�, the time-independent Dirac-Weyl equation
for the quasiparticle isospinor ��x ,y� at energy E=vF� reads
�we put �=1�

� · �− i � +
e

c
A�� = �� , �1�

where, following Ref. 16, we focus on a single K point �val-
ley�. The Pauli matrices �� with �= ��1 ,�2� act in sublattice
space, and B�x ,y�êz=rotA�x ,y�. The field profiles considered
in Fig. 1 are independent of the longitudinal transport direc-
tion y and constant within each of the three regions,

B�x� = �B , x � − d ,

B�, �x� � d ,

�B , x � d ,
� �2�

where �= 	1 gives the relative sign of the magnetic field on
the two sides �x��d. We mention in passing that we have
also studied the power-law form B�x�
xm �with m=1,2 ,3�
to make sure that the steps in Eq. �2� do not cause unphysical
artifacts. Indeed, the same qualitative features as reported
below for the profile �2� were found from such calculations,
which can also benefit from the semiclassical approximation.
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FIG. 1. Magnetic field profile �2� for magnetic waveguide �ho-
mogeneous along y direction�. �a� Case �=1. For B��0, counter-
propagating pairs of snake states are possible. �b� Case �=−1, with
unidirectional propagating snake states.
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A convenient gauge for the vector potential A=A�x�êy with
B�x�=�xA�x� is �for �= +1�

A�x� = �Bx + �B − B��d , x � − d ,

B�x , �x� � d ,

Bx − �B − B��d , x � d .
� �3�

Due to translation invariance in the y direction, we can pa-
rametrize solutions ��x ,y�=��x�eiky by the conserved longi-
tudinal momentum k. From Eq. �1�, for the spinor component
u in ��x�= �u ,v�T, we obtain

	�x
2 −

e

c
B�x� − �k +

e

c
A�x��2

+ �2
u = 0. �4�

For ��0, v= �1 / i����x−k− �e /c�A�x��u then gives the other
component. To obtain the band structure, we first determine
the general solution in each of the three regions separately.
Matching conditions follow from the continuity of the wave
function at x= �d and will be shown to give an energy quan-
tization condition.

For x�−d, the constant magnetic field B implies the
length scale lB=c /e�B�. We may then explicitly solve Eq.
�4� in terms of parabolic cylinder functions Dp�q�.16 With the
auxiliary variables

q = 2��x + d�/lB + sgn�B�klB�, p = ��lB�2/2 − 1, �5�

and complex coefficients a	, the solution reads

�B�0�x� = �
	

a	�Dp�	q� �
2

i�lB
Dp+1�	q�� , �6�

�B�0�x� = �
	

a	�Dp+1�	q� 	
2

i�lB
�p + 1�Dp�	q�� . �7�

Similarly, the eigenfunction for x�d can be expressed with
coefficients c	, and by replacing d→−d in Eq. �5�. Finally,
for B��0, the region �x��d again admits such a representa-
tion with coefficients b	 and d→0 in Eq. �5�. For B�=0, a
plane-wave solution applies instead,

��x� = �
	

b	� 1

	k� + ik

�
�e	ik��x+d�, �8�

where k�=�2−k2. For ���� �k�, the square root is taken as
k�= i��2−k2�. Without loss of generality we now put B�0.
Normalizability then implies a+=c−�=0 and we are left with
four complex coefficients, one of which is fixed by the
normalization condition. The two matching conditions
�at x= �d� for the two-spinor ��x� then give four equations
for three unknowns, which generates the sought condition for
the energy bands �n�k�.

For the symmetric setup �= +1 with B�=0, some algebra
yields the energy quantization condition

w−1�u2v1 − z2u1v2� + w�z2u2v1 − u1v2� + �z2 − 1��u1u2 − v1v2�

= 0, �9�

which for given k generates an equation for � since
k�=k��� ,k�. Here we used the notation

u1,2 = Dp��2klB� ,

v1,2 = 	
2

i���lB
Dp+1��2klB� ,

w = �k� + ik�/���, z = e2ik�d. �10�

Equation �9� must then be solved numerically, and leads to
the energy bands �n�k� shown in Fig. 2�a�. For large �k�, the
eigenvalues approach the well-known relativistic Landau
levels at �lB=sgn�n�2�n�,2 including a zero-energy solution
�not shown in Fig. 2�.

To illuminate the current-carrying states, we plot in Fig.
2�b� the transverse profile of the particle current,
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FIG. 2. �a� Spectrum of the magnetic waveguide with �= +1,
d= lB, and B�=0. Energies �momenta� are given in units of vF / lB

�lB
−1�. Only the few lowest electronlike ��n�k��0� states are shown.

�b� Current profile j1kF
�x� in units of vF / lB �see Eq. �11��, with x in

units of lB. The plot is for n=1 and �lB=1, leading to
kFlB� 	0.7. The two counterpropagating states are centered near
the middle of the waveguide.

GHOSH et al. PHYSICAL REVIEW B 77, 081404�R� �2008�

RAPID COMMUNICATIONS

081404-2



jnk�x� = vF„�nk
* �x�…T�2�nk�x� , �11�

where �nk�x� is the transverse eigenspinor to energy �n�k�.
Generalizing the standard argument �see Appendix E in Ref.
17� to the case of Dirac-Weyl quasiparticles, one can show
that

vn�k� � � dx jnk�x� = �k�n�k� . �12�

We stress that Eq. �12� is a nontrivial result for Dirac fermi-
ons. It holds for any magnetic field profile with B�x ,y�
=B�x�. This fact leads to the usual cancellation of carrier
velocity vn�k� and density of states �2��k�n�k���−1, and thus
the two-terminal conductance will be 4e2 /h �assuming per-
fect contacts to reservoirs�. However, as seen in Fig. 2�b�,
right- and left-moving states occupy the same spatial region
and are therefore susceptible to backscattering perturbations,
e.g., due to impurities, charge inhomogeneities, or fluctua-
tions in the magnetic field. In practice, quantized conduc-
tance is thus not expected for a waveguide with B�=0.

Next we consider the asymmetric case with �=−1 but still
B�=0 �see Fig. 1�b��. From the analogy to Schrödinger fer-
mions, one expects to find special unidirectional snake
states.15 On a semiclassical level, the unidirectionality can be
understood by noting that cyclotron orbits have a different
winding sense for x�−d and x�d. The propagating snake
state follows by combining half an orbit from each side and
a linear trajectory in the central region. The energy quantiza-
tion condition takes again the form �9� after replacing
u2=Dp+1�−2klB� and v2= �2 / i���lB��p+1�Dp�−2klB� in
Eq. �10�. Numerical solution yields the spectrum depicted in
Fig. 3. First, we notice a strong asymmetry in the energy
bands �n�k�, just as in the Schrödinger case.15 For k�0 a
linear dispersion relation is observed, corresponding to snake
states propagating with n-independent velocity �vn�=vF at
sufficiently negative k �see Eq. �12��. The equality of snake
velocity and Fermi velocity for �kd��1 also follows from a
simple semiclassical estimate. Second, the levels merge pair-
wise at large positive k to form the relativistic Landau levels,
except for the lowest band in Fig. 3, which merges with the
highest negative-� band �not shown� to approach the zero-
energy Landau level. This is a feature encountered only for

Dirac fermions and makes this state easily identifiable for
weakly doped graphene. However, it is important to stress
that, for any finite k, there can be no true zero-energy state
for magnetic field configurations with �=−1. This can be
proven on general grounds as a consequence of the
Aharonov-Casher theorem, which in turn follows as a special
limit of the celebrated index theorem.18

Interestingly, there is another peculiar subtlety for this
magnetic field profile. This is seen by computing the equi-
librium average of the current using Eqs. �11� and �12�,
which predicts a nonzero result. In fact, the equilibrium cur-
rent formally diverges and is limited only by the bandwidth
of the model. To interpret this nonsensical result we note that
in the absence of boundaries, the snake state propagates in
just one direction and thus produces an unbalanced current
flow. The conundrum is resolved when boundary contribu-
tions to the current are included; they are inevitably present
in any real sample. In fact, the dispersion relation in Fig. 3
ultimately bends upward for k→� in the presence of a
boundary located at xb�d. The counterpropagating edge
state at this boundary will then balance the total current.15

We have explicitly checked that this scenario holds true for
the case of a zigzag edge, where a simple boundary condition
on the spinor at x=xb can be used.3 In analogy to quantum
Hall edge states,8 however, it should be possible to experi-
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FIG. 3. Same as Fig. 2�a� but for �=−1, cf. Fig. 1�b�.
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FIG. 4. �a� Same as Fig. 2�a� but for B�=−B �cf. Fig. 1�a��. The
lower pair of �n�k� curves has an avoided level crossing �not visible
on this scale�. The current profile �b� at �lB=0.83 �corresponding to
kFlB� 	1� shows that the two counterpropagating snake states are
spatially separated already for d= lB.
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mentally probe the locally unbalanced current carried by the
snake state using time-resolved transport measurements19 or
scanning tunneling spectroscopy.

We now go back to the symmetric setup �= +1 but take
B��0. Such a field configuration can be generated by depos-
iting two ferromagnetic layers on top of a graphene sheet
covered by a thin insulating layer.10,12 In that case one finds
two counterpropagating snake states, and no boundary con-
tributions are required to get zero total current in equilib-
rium. While for B�=0, no snake states exist, they do appear
once B��0. By generalizing Eq. �9�, numerical solution of
the corresponding energy quantization condition leads to the
results in Fig. 4�a�. Qualitatively, the spectrum consists of
snake states �with approximately linear dispersion� and Lan-
dau level states �dispersionless�, with avoided level crossings
between successive eigenenergies �n�k�. If the Fermi level
intersects only the lowest band shown in Fig. 4�a�, the quan-
tized conductance 4e2 /h follows directly from the Kubo for-
mula. The current-carrying states at 	kF are counterpropa-
gating snake states which are spatially separated and
centered near x= 	d �see Fig. 4�b��. Due to this spatial sepa-
ration, weak disorder effects or irregularities in the magnetic
field will not be able to induce backscattering processes be-

tween these states as long as d� lB. In particular, snake states
behave identically for both K valleys, and thus even interval-
ley scattering processes are not expected to mix counter-
propagating states. The conductance quantization in such a
setup should therefore be observable and very precise.

To conclude, we have analyzed the properties of electron
waveguides in graphene, produced by suitable inhomoge-
neous magnetic field profiles. Under the setup in Fig. 1�a�
with B��0, we predict robust and highly accurate conduc-
tance quantization in units of 4e2 /h. This system is clearly of
interest in the context of interacting one-dimensional quan-
tum wire physics, as the electron-electron interaction can
lead to qualitatively new features. We hope that our work
motivates experimental and further theoretical studies.

Recently, we have become aware of a paper by Rakyta
et al.,20 where some of our results for �=−1 were also re-
ported.
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